Efficient Inference and Structured Learning for Semantic Role Labeling

نویسندگان

  • Oscar Täckström
  • Kuzman Ganchev
  • Dipanjan Das
چکیده

We present a dynamic programming algorithm for efficient constrained inference in semantic role labeling. The algorithm tractably captures a majority of the structural constraints examined by prior work in this area, which has resorted to either approximate methods or off-theshelf integer linear programming solvers. In addition, it allows training a globally-normalized log-linear model with respect to constrained conditional likelihood. We show that the dynamic program is several times faster than an off-the-shelf integer linear programming solver, while reaching the same solution. Furthermore, we show that our structured model results in significant improvements over its local counterpart, achieving state-of-the-art results on both PropBankand FrameNet-annotated corpora.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Imitation Learning Methods for Semantic Role Labeling

Global features have proven effective in a wide range of structured prediction problems but come with high inference costs. Imitation learning is a common method for training models when exact inference isn’t feasible. We study imitation learning for Semantic Role Labeling (SRL) and analyze the effectiveness of the Violation Fixing Perceptron (VFP) (Huang et al., 2012) and Locally Optimal Learn...

متن کامل

برچسب‌زنی خودکار نقش‌های معنایی در جملات فارسی به کمک درخت‌های وابستگی

Automatic identification of words with semantic roles (such as Agent, Patient, Source, etc.) in sentences and attaching correct semantic roles to them, may lead to improvement in many natural language processing tasks including information extraction, question answering, text summarization and machine translation. Semantic role labeling systems usually take advantage of syntactic parsing and th...

متن کامل

برچسب‌زنی نقش معنایی جملات فارسی با رویکرد یادگیری مبتنی بر حافظه

Abstract Extracting semantic roles is one of the major steps in representing text meaning. It refers to finding the semantic relations between a predicate and syntactic constituents in a sentence. In this paper we present a semantic role labeling system for Persian, using memory-based learning model and standard features. Our proposed system implements a two-phase architecture to first identify...

متن کامل

Unsupervised structured semantic inference for spoken dialog reservation tasks

This work proposes a generative model to infer latent semantic structures on top of manual speech transcriptions in a spoken dialog reservation task. The proposed model is akin to a standard semantic role labeling system, except that it is unsupervised, it does not rely on any syntactic information and it exploits concepts derived from a domain-specific ontology. The semantic structure is obtai...

متن کامل

Semantic Role Labeling Via Integer Linear Programming Inference

We present a system for the semantic role labeling task. The system combines a machine learning technique with an inference procedure based on integer linear programming that supports the incorporation of linguistic and structural constraints into the decision process. The system is tested on the data provided in CoNLL2004 shared task on semantic role labeling and achieves very competitive resu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • TACL

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015